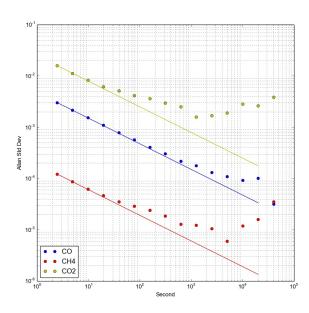
CO₂ + CO + CH₄ + H₂O Gas Concentration Analyzer

PICΛRRO

- Parts-per-billion sensitivity, precision and accuracy
- Field and laboratory deployable
- Lowest drift of any continuous greenhouse gas measurement instrument
- Rugged and insensitive to change in ambient temperature
- Meets the WMO Data Quality Objectives and the ICOS for CO, CO₂ and CH₄

The Picarro G2401 greenhouse gas concentration analyzer enables simultaneous measurements of CO₂, CH₄, CO with part-per-billion (ppb) sensitivity and negligible drift over months of operation. The G2401 also features Picarro's unique algorithms to correct for the dilution effect of H₂O vapor and to report dry gas mole fractions of CO₂, CH₄ and CO.


The G2401 is compliant with performance requirements established by The World Meteorological Organization (WMO), and other international networks, such as the Integrated Carbon Observation System (ICOS) for atmospheric monitoring stations.

The unique combination of continuous 4-species measurement, high precision, field deployability, and long-term reliability makes the G2401 the instrument of choice for greenhouse gas measurements.

Patented Picarro cavity ring-down spectroscopy (CRDS) technology enables an effective measurement path length of up to 20 kilometers in a compact cavity, which results in exceptional precision and sensitivity

in a small-footprint analyzer. A meticulously designed small optical cavity incorporates precise temperature and pressure control. As a result, the analyzer delivers a best-in-class combination of precision, accuracy, low drift, and ease-of-use.

Allan Deviation Plot

G2401 Guaranteed Performance Specifications in dry air	CO ₂	СО	CH₄	H ₂ O
Precision (1σ, 5 sec/5 min/60 min) Reference gas not needed	<50 ppb/20 ppb/ 10 ppb	<15 ppb/1.5 ppb/ 1 ppb	<1 ppb/0.5 ppb/ 0.3 ppb	<30 ppm/5ppm/ n/a
Max Drift at STP (over 24 hrs/1 month) (peak-to-peak, 50-minute average) Reference gas not needed	100 ppb/500 ppb	10 ppb/50 ppb	1 ppb/3 ppb	100 ppm ±5% of reading
Max Uncertainty using Reference Gas (2σ, 1 hr average) WMO Data Quality Objective for GAW Stations	<50 ppb	<2 ppb	<1 ppb	n/a
Reproducibility (10 min, 1σ) [1] ICOS Atmospheric Station Specification	<50 ppb	<1 ppb	<0.5 ppb	n/a
Automated Determination of Dry Mol Fraction	Included	Included	Included	n/a
Operating Range	0–1000 ppm	0–5 ppm	0–20 ppm	0–7% v H₂O
Guaranteed Specifications Range	300-500 ppm	0–1 ppm	1–3 ppm	0–3% v H₂O
Measurement Interval	<5 seconds	<5 seconds	<5 seconds	<5 seconds
Rise/Fall Time (10–90%/90–10%)	<5 seconds	<5 seconds	<5 seconds	<5 seconds

^[1] When alternately measuring a dry natural air cylinder for 30 minutes and ambient air for 280 minutes with statistics based on last 10 minute average data of 30 minute cylinder measurement.

G2401 System Specifications		
Measurement Technique	Cavity Ring-Down Spectroscopy (CRDS)	
Measurement Cell Temperature Control	±0.005°C	
Measurement Cell Pressure Control	±0.0002 atm	
Sample Temperature	-10 to +45°C	
Sample Pressure	300 to 1000 Torr (40 to 133 kPa)	
Sample Flow Rate	< 0.4 slm at 760 Torr, no filtration required	
Sample Humidity	<99% R.H. non-condensing @40°C, no drying required	
Ambient Temperature Range	10 to 35°C (operating) -10 to 50°C (storage)	
Ambient Humidity	<99% RH non-condensing	
Accessories (Included)	Pump (external), keyboard, mouse, LCD monitor (optional)	
Outputs	RS-232, Ethernet, USB, analog (optional) 0-10 V	
Fittings	1/4" Swagelok ®	
Dimensions	Analyzer: 17" w x 7" h x 17.55" d (43.18 x 17.78 x 44.57 cm) not incl. 0.5" feet External Pump: 7.5" w x 4" h x 11" d (19 x 10.2 x 28 cm)	
Installation	Benchtop (standard) or 19" rack mount chassis (optional)	
Weight	59.3 lbs (26.9 kg), includes external pump	
Power Requirements	100-240 VAC, 47-63 Hz (auto-sensing), <260 W start-up (total); ~110 W (analyzer) + 80 W (pump) at steady state	

This product is not optimized for vehicular deployment where there is a requirement for pin-pointing precise methane source locations while driving. As a result, we do not support this product's use for natural gas leak detection or other real-time methane emissions applications while driving. The Picarro Surveyor™ system is the optimal product for such studies.